
ISSN 1884-0760

GRACE TECHNICAL REPORTS

Bidirectionalizing Structural Recursion on
Graphs

Soichiro Hidaka Zhenjiang Hu Kazuhiro Inaba
Hiroyuki Kato Kazutaka Matsuda Keisuke Nakano

GRACE-TR 2009–03 August 2009

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Bidirectionalizing Structural Recursion on Graphs

Soichiro Hidaka Zhenjiang Hu Kazuhiro Inaba Hiroyuki Kato
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
{hidaka,hu,kinaba,kato}@nii.ac.jp

Kazutaka Matsuda
The University of Tokyo/JSPS Research Fellow
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

kztk@ipl.t.u-tokyo.ac.jp

Keisuke Nakano
The University of Electro-Communications

1-5-1 Chofugaoka, Chofu-shi
Tokyo 182-8585, Japan

ksk@cs.uec.ac.jp

August 31, 2009

Abstract

The bidirectional transformation problem has been attracting more
and more attention in the programming language community. Despite
many promising results about bidirectional transformation on linear
strings or tree-like data structures, it remains as an open problem
whether it is possible to design a language that can support practical
development of bidirectional transformations on graphs. In this pa-
per, we propose the first language-based (linguistic) solution towards
solving this challenging problem. We approach this problem by giv-
ing a well-behaved bidirectional semantics for structural recursion (on
graphs), the most essential construct in UnCAL which is the under-
lying graph algebra for the known UnQL graph query language. In
particular, we carefully refine the existing forward evaluation of struc-
tural recursion so that it can produce useful trace information for later
backward evaluation, and extending the bulk semantics of structural
recursion from forward evaluation to backward evaluation. We have
formally proved the well-behavedness of our bidirectional semantics,
fully implemented bidirectional transformation engine for UnQL, and
confirmed the effectiveness of our approach through many non-trivial
examples including typical transformation in database and software
engineering.

put

modify

t’

get t

s’

s

Figure 1: Bidirectional Transformation

1 Introduction

Bidirectional transformation (Foster et al. 2005; Czarnecki et al. 2009) is
characterized by a pair of transformations, a forward transformation get
and a backward transformation put as in Figure 1. The forward transforma-
tion get is used to produce from a source s to a view t, while the backward
transformation put is to reflect modification on the view back to the source.
Practical examples of bidirectional transformation include synchronization
of replicated data in different formats (Foster et al. 2005), presentation-
oriented structured document development (Hu et al. 2008), interactive user
interface design (Meertens 1998), coupled software transformation (Lämmel
2004), and the well-known view updating mechanism which has been inten-
sively studied in the database community (Bancilhon and Spyratos 1981;
Dayal and Bernstein 1982; Gottlob et al. 1988; Hegner 1990; Lechtenbörger
and Vossen 2003).
Despite many promising results on bidirectional transformation, the data

that can be dealt with are limited to linear strings or tree-like data struc-
tures. It remains as an open problem (Czarnecki et al. 2009) whether it
is possible to design a language that can support practical development of
bidirectional transformations on graphs which contains node sharing and
cycles. It would be remarkably useful in many applications if bidirectional
transformation can be applied to graph data structures, because graphs
play an irreplaceable role in representing more complex data structures
such as models (e.g., UML diagrams) in model-driven software develop-
ment (Stevens 2007), and Object Exchange Model (OEM) for exchanging
arbitrary database structures (Papakonstantinou et al. 1995).
There are many challenges in designing a language for bidirectional

transformation on graphs. First, unlike strings and trees, there is no unique
way to represent, construct, and decompose a general graph, and this
requires more precise definition of equivalence between two graphs. Second,
graphs have sharing nodes and cycles, which makes forward computation
much more complicated than that on trees (let alone to say about backward

2

computation), because näıve computation on graphs would visit the same
nodes many times and possibly infinitely often.
In this paper, we give the first language-based (linguistic) solution

to the problem of bidirectional graph transformation. We approach this
problem by providing a bidirectional semantics for an existing graph query
language UnQL (Buneman et al. 2000). We choose UnQL as the basis of our
bidirectional graph transformation for the following two reasons.

• First, UnQL is a graph querying language that has been intensively
studied in the database community with solid foundation and efficient
implementation based on graph algebra. It has a concise and powerful
surface syntax based on select-where clauses like SQL, and can be
easily used to describe many interesting graph transformations.

• Second, and more importantly, graph transformations in UnQL are
structured in the sense that any transformation can be expressed in
terms structural recursion, which can be evaluated in a bulk way (Bune-
man et al. 2000); a structural recursion is evaluated by first processing
in parallel on all edges of the input graph and then combining the re-
sults. This feature significantly contributes to our bidirectionalization
because it helps us to trace a corresponding source from its result.

Our technical contributions are summarized as follows.

• We are, as far as we are aware, the first who recognize the importance of
structural recursion and its bulk semantics in addressing the challeng-
ing problem of bidirectional graph transformation, and succeeded in
a general graph transformation framework based on structural recur-
sion. We show that graph transformations described with structured
recursion are not only suitable for optimization as intensively stud-
ied so far (Buneman et al. 2000), but also make backward evaluation
easier.

• We give a formal definition of bidirectional semantics for structural
recursion (Section 4), by (1) refining the existing forward evaluation
so that it can produce useful trace information for later backward eval-
uation, and (2) extending the bulk semantics of structural recursion
from forward evaluation to backward evaluation. And we prove that
our bidirectional semantics is well-behaved. The success of bidirection-
alizing non-trivial UnQL shows practical power of our approach.

• We have fully implemented our bidirectionalization presented in this
paper and confirmed the effectiveness of our approach through many
non-trivial examples including typical transformations in database
management and software engineering (Section 5). More examples and
demos are available in our project web site http://www.biglab.org.

3

(a) A Simple Graph (b) An Equiva-
lent Graph

1

2

a

3

b

4

c

(c)

1

2

a

3

a

4

b

5

c

(d)
(� 2(c))

Figure 2: Graph Equivalence Based on Bisimulation

The rest of this paper is organized as follows. We start with a brief
overview of the basic idea of graph data model and graph query language
UnQL in Section 2, before we show how an UnQL query program can be
automatically transformed to structural recursion in its underlying graph
algebra UnCAL in Section 3. Then we provide bidirectional semantics for
UnCAL and prove that the bidirectional semantics is well-behaved in section
4. Section 5 discusses our implementation and experimental results, Section 6
summarizes related work, and Section 7 concludes the paper.

2 Graph Transformation in UnQL

We start with a brief overview of the graph data model and unidirectional
graph transformation in UnQL (Buneman et al. 2000), a graph query
language to be bidirectionalized in this paper.

2.1 Graph Data Model

External Graph Representation Graphs in UnQL are rooted and di-
rected cyclic graphs with no order between outgoing edges. They are edge-
labelled in the sense that all information is stored as labels on edges and the
labels on nodes serve as a unique identifier and have no particular meaning.
Figure 2(a) gives a small example of a directed cyclic graph with six nodes
and seven edges. In text, it is represented by

G = {a : {a : G1}, b : {a : G1}, c : G2}
G1 = {d : {}}
G2 = {c : G2}

4

where the notation {l1 : G1, . . . , ln : Gn} denotes a set representing a graph
which contains n edges with labels l1, . . . , ln, each li pointing to a graph Gi,
and the empty set {} denotes a graph with a single node. Two graphs G1

and G2 can be merged using set union operation G1∪G2. This graph model
is set-based in the sense that {a : {}, a : {}} and {a : {}} represent the same
graph. In addition, the ε-edge is allowed to represent shortcut of two nodes,
and works like ε-transition in automaton. For instance, we have

{ε : {a : G1}, ε : {b : G2}} = {a : G1, b : G2}.

Internal Graph Representation While the external graph representa-
tion suffices for users to consider when writing graph transformation, the
internal graph representation is designed for internal implementation and
semantics description as in Section 4. Different from the external represen-
tation, nodes in the internal representation may be marked with input and
output marker , which are used as an interface for composition of graphs.
Now we describe the formal definition and notations of graphs. These

notations will be used to specify the bidirectional semantics of UnCAL
in Section 4. Let Label , X and Y be a (possibly infinite) set of labels, a
set of input markers, and a set of output markers, respectively. A graph
G is denoted by a quadruple (V,E, I,O), where V is a set of nodes,
E ⊆ V ×Label ε×V with Label ε = Label∪{ε} is a set of edges, I ⊆ X ×V is a
set of pairs of input markers and corresponding input node, and O ⊆ V ×Y
is a set of pairs of output nodes and associated output marker. For each
marker &x ∈ X , there is at most one node v such that (&x, v) ∈ I. The node
v is called input node with marker &x and denoted by I(&x). In contrast,
more than one node can be marked with an identical output marker. They
are called output nodes.
Intuitively, input nodes can be regarded as root nodes of the graph.

In other words, although the external representation limits a graph to be
singly rooted, internally we deal with multiple roots. For singly rooted
graphs, we implicitly use the default marker & to indicate its single root.
An output node can be regarded as a “context-hole” of graphs where an
input node with the same marker is plugged later. Indeed, the “vertical
graph composition” operator G1 @G2 is defined to plug the input nodes of
G2 into their corresponding output nodes in G1.
For example, in internal representation, the simple graph in

Figure 2(a) is denoted by (V,E, I,O) where V = {1, 2, 3, 4, 5, 6},
E = {(1, a, 2), (1, b, 3), (1, c, 4), (2, a, 5), (3, a, 5), (4, c, 4), (5, d, 6)},
I = {(&, 1)}, and O = {}. This graph is not really typical, as it has
no ε-edge, only one input node, and no output node. We will see more
examples later.

Graph Equivalence Graph bisimulation defines value equivalence be-
tween graph instances. The intuition is that two graphs are value equivalent

5

if they are equal when viewed as sets of paths from the root. Informally, we
say that there is a simulation from graph G1 to graph G2 if every node x1 in
G1 has a counterpart x2 in G2, and if there is an edge form x1 to y1 in G1,
then there is a corresponding edge from x2 to y2 in G2 that is a counterpart
of y1. In UnQL data model, graph equivalence of two graphs requires the
correspondence of input and output markers between them as well.
For instance, the graph in Figure 2(b) is value equivalent to the graph in

Figure 2(a); the new graph has an additional ε-edge (denoted by the dotted
line), duplicates the graph rooted at node 5, and unfolds and splits the cycle
at node 4.
Note also that sets of paths from the root do not always represent value

equivalence. The graph in Figure 2(c) is not value equivalent to the graph
in Figure 2(d) although they are represented by an identical set of paths
{a.b, a.c} from the root.
As a remark, the notion of bisimulation is useful because it allows varia-

tion in representing semantically equivalent graphs. It has been shown that
a graph transformation defined in UnQL preserves bisimilarity (Buneman
et al. 2000). If two graphs G1 and G2 are bisimilar, f(G1) and f(G2) are
bisimilar for any transformation f in UnQL.

2.2 UnQL

UnQL has a convenient select-where construct like SQL to extract infor-
mation from a graph and building a new graph with the information. Figure
3 shows an abstract syntax of UnQL. We omit the detailed explanation of
the language syntax, which can be found in (Buneman et al. 2000). Rather
we illustrate the important features through some examples. Variables in
UnQL are prefixed with $ in this paper. For all examples below, we assume
a variable $db is bound to the graph in Figure 2(a).

2.2.1 The select-where Construct

A query of the form select T whereB1, . . . , Bn extracts information from
graphs based on the binding and/or Boolean conditions B1, . . . , Bn and
constructs a graph according to the T .

Example 1. The following query returns subgraphs that are pointed by b
from the root of $db.

select $G where {b : $G} in $db

This query first matches the graph pattern {b : $G} against the graph $db
and gets bindings for $G , and then produces the result according to the
select part. Figure 4(a) shows the result of this query.

6

(query) Q ::= select T where B, . . . , B
(template) T ::= {L : T, . . . , L : T} | $G | Q

| T ∪ T | f($G)
| if L = L then T else T
| let sfun f {Lp : Gp} = T

| f {Lp : Gp} = T
. . .

sfun f ′ {Lp : Gp} = T
| f ′ {Lp : Gp} = T

. . .
. . .

in T
(condition) B ::= Gp in $G | L = L | L �= L
(label) L ::= $l | a
(label pattern) Lp ::= $l | Rp
(graph pattern) Gp ::= $G | {Lp : Gp, . . . , Lp : Gp}
(regular Rp ::= a | | Rp.Rp
path pattern) | (Rp|Rp) | Rp? | Rp∗

Figure 3: Syntax of UnQL

(a) Result of Example 1

(b) Result of Example 2

(c) Result of Example 3

Figure 4: Result Graphs of Query Examples on Figure 2(a)

7

Example 2. The following query has multiple conditions in the where part
and construction of graphs in the select part.

select $G1 ∪ $G2 where {b : $G1} in $db,
{a : $G2} in $db

It returns all subgraphs that are pointed by either b or a from the root.
Figure 4(b) shows the result of this query.

2.2.2 Regular Path Patterns

Regular path patterns, similar to XPath, are provided for concisely express-
ing “deep” queries against a graph.

Example 3. Consider the following query.

select {result : $G1}
where { ∗.(a|b) : $G1} in $db,

{$l : $G2} in $G1,
$l �= a

It extracts all subgraphs $G1 according to the regular path ∗.(a|b) (i.e.,
any path ended with an edge labelled a or b), keeps those subgraphs that
do not contain an edge of a from their root, and glues the results with new
edges labelled result. It returns all subgraphs that are pointed by either b
or a from the root. Figure 4(c) shows the result of this query.

2.2.3 Structural Recursion

Structural recursion is powerful to define various functions to manipulate
graphs. A structural recursion f on graphs is a very simple recursive
computation scheme on graphs defined by

f {} = {}
f {$l : $G} = t($l , $G)
 f($G)
f ($G1 ∪ $G2) = f($G1) ∪ f($G2)

where
 is a given binary operator and the term t($l , $G) does not contain
recursive call to f . Different choice of
 defines different function. Function
f is homomorphic in the sense that application result of a union of two
graphs coincides with a union of application result of them. Since the first
and the third equations are the same for any definition, we may omit them
and simplify the above definition as:

sfun f {$l : $G} = t($l , $G)
 f($G).

Note that structural recursion is similar to the familiar higher-order
function map in functional programming language, because it basically

8

manipulates each edge of the graph in parallel. Note also that structural
recursion has a syntactic restriction that no return value of a function should
be fed to another function as its input. For instance, a function definition

sfun f {$l : $G} = t($l , $G)
 f(g($G))

is invalid because g ($G) is fed to function f .
This restriction guarantees that the recursion always terminates.

Example 4. As a simple example, we use the following structural recursion
to replace all labels a by d and delete the edges labelled c for an input graph.

sfun a2d xc {$l : $G} = if $l = a then {d : a2d xc($G)}
else if $l = c then a2d xc($G)

else {$l : a2d xc($G)}
A natural extension of the above structural recursion is to allow mutual

recursion as shown in Figure 3. For example, a mutual recursive definition

sfun h {b : $G} = {b : a2e($G)}
| h {$l : $G} = h($G)

sfun a2e {a : $G} = {e : a2e($G)}
| a2e {$l : $G} = {$l : a2e($G)}

defines a function h which erases all edges until it reaches a b. After that it
copies the graph, but replace every a with an e.

2.3 A Practical Example: Customer2Order

As a more practical example, we consider a transformation from customers’
graph to orders’ graph, which is adapted from a similar example in the
textbook on model-driven software development (Pastor and Molina 2007).
It will serve as one of the running examples of this paper.
Figure 5 gives a simple graph representing customers’ information. Re-

member that all information should be stored on labels of edges in our graph
model. All numbers in nodes have no particular meaning. The graph has a
root pointing to two customers, each having a name, some email addresses,
several addresses of different types (e.g. shipping or contractual customer
address). A customer can have many customer orders.
Now consider how to generate from the customers’ graph a graph that

represents those information of those orders that have type of “shipping”,
such that its root points to all the orders and each order contains order
information of the date, the order number, the customer name, and the
address to which the goods should be delivered. This transformation can be

9

1

0

1003

3

2

"16/12/2008"

5

4

1002

7

6

"16/10/2008"

9

8

1001

11

10

"16/07/2008"

13

12

"IPL of Tokyo"

15

14

"100-888"

17

16

contractual

19

18

"BiG office of Tokyo"

21

20

"200-777"

23

22

shipping

24

no date

25

info code type

27

26

"kato@biglab"

29

28

"Kato"

30

no date

40

order_oforder

31

order

32

add

34

email

36

email

38

name

no date

order_of

info code type

33

"tanaka@gmail"

35

"tanaka@biglab"

37

"Tanaka"

39

order order_of add email name add

41

customercustomer

Figure 5: Cyclic Graph gcus Representing Customer-Centric Database

1

0

1003

3

2

"16/12/2008"

5

4

1002

7

6

"16/10/2008"

9

8

1001

11

10

"16/07/2008"

13

12

"BiG office of Tokyo"

15

14

"200-777"

17

16

Kato

19

18

Tanaka

20

22

order

24

order

26

order

no date customer_name

21

ship no datecustomer_name

23

shipno date customer_name

25

ship

info code info codeinfo code

Figure 6: Graph gord Representing Order-Centric Database

expressed in UnQL as follows, and generates the graph in Figure 6.

select {order : {date : $date ,
no : $no,
customer name : $name ,
addr : $a}}

where {customer.order : $o} in $customer db,
{order of : $c, date : $date , no : $no} in $o,
{add : $a, name : $name} in $c,
{type : shipping} in $a

3 UnCAL: An Internal Graph Algebra

UnQL is convenient and powerful but is not suitable to discuss bidirectional
semantics on UnQL due to its complicated language constructs such as
regular path pattern. To resolve this problem, we use the idea in (Buneman
et al. 2000) to map UnQL to UnCAL, and then discuss bidirectional
semantics on UnCAL. UnCAL is an internal graph algebra of a graph query

10

T ::= {} (* one-node graph *)
| {L : T} (* graph with a single edge from root *)
| T ∪ T (* union of two graphs *)
| &x := T (* label the root node with input marker x *)
| &y (* graph with output marker y *)
| () (* empty graph *)
| T ⊕ T (* disjoint union *)
| T @ T (* append of two graphs *)
| cycle(T) (* graph with cycles *)
| $G (* variable reference *)
| if L = L then T else T (* conditional *)
| rec(λ($l , $G).T)(T) (* application of structural recursion *)

L ::= $l (* label variable reference *)
| a (* label (a ∈ Label) *)

Figure 7: Core UnCAL Language

language UnQL. An UnQL query program written by users is translated
into well-defined UnCAL expressions. In this section, after explaining how
to represent structural recursion in UnCAL with new graph constructors, we
show that any UnQL program can be automatically mapped to structural
recursions in UnCAL.

3.1 Structural Recursion in UnCAL

The core of the UnCAL language is summarized in Figure 7. In addition to
the graph constructors, UnCAL provides structural recursion, a general way
to manipulate graphs.

Graph Constructors There are nine data constructors which are used
to build arbitrary graphs (Buneman et al. 2000).

• {} (one-node graph): it constructs a graph with a single node without
edges.

• {l : G} (one-edge-connected graph): it constructs a graph with the
root pointing to the root of the graph G through the edge l.

• G1∪G2 (union of graphs): it unifies two graphs by creating a new root
and connect it to the roots of G1 and G2 using ε-edges.

• &x := G (graph with input marker): it adds some input marker to the
root of G.

• &y (output node): it constructs a graph with a single node marked
with one output marker.

11

• () (empty graph): it constructs an empty graph which has neither node
nor edge.

• G1 ⊕ G2 (disjoint union of graphs): it constructs a graph by compo-
nentwise union.

• G1 @G2 (append of graphs): it appends two graphs by connecting the
output nodes of G1 with corresponding input nodes of G2 with ε-edges.

• cycle(G) (cyclic graph): it connects the input nodes with the output
nodes of G to form cycles.

The formal definition of the semantics of these constructors can be found
in Section 4. It is worth noting that this set of constructors are powerful
enough to describe any unordered graphs.

Example 5. The graph in Figure 2(a) can be constructed as follows (though
not uniquely).

&z@ cycle(&z := {a : {a : &z1}} ∪ {b : {a : &z1}} ∪ {c : &z2}
⊕ (&z1 := {d : {}})
⊕ (&z2 := {c : &z2}))

We will use the following two abbreviations: {l1 : G1, . . . , ln : Gn} for
{l1 : G1, } ∪ . . . ∪ {ln : Gn} and (t1, . . . , tn) for t1 ⊕ . . . ,⊕tn. Thus, the
above UnCAL program becomes

&z@ cycle(&z := {a : {a : &z1}, b : {a : &z1}, c : &z2},
&z1 := {d : {}},
&z2 := {c : &z2}).

It is worth remarking that not all these constructors are required to
transform UnQL queries to UnCAL terms. In fact, the constructor cycle is
not required.

Structural recursion in UnCAL Any structural recursion in UnQL

let sfun f {$l : $G} = t($l , $G)
 f($G) in f(t′)

can be described by rec as

&z1 @ (rec(λ($l , $G).(&z1 := t($l , $G)
 &z1))(t′).

Generally, all branches in the definition of sfun have to be translated into
if branches in UnCAL.

12

(a) Before removing ε-edges (b) After removing ε-edges

Figure 8: Bulk Semantics in UnCAL

Example 6. The UnQL structural recursion a2d xc given in Example 4
above is represented by

&z1 @ (rec(λ($l , $G ′). if $l = a then (&z1 := {d : &z1})
else if $l = c then (&z1 := {ε : &z1})

else (&z1 := {$l : &z1}))($G))
For mutually defined functions, we can merge them into one rec con-

struct by the tupling transformation (Hu et al. 1997).

3.2 Bulk Semantics of Structural Recursion

Structural recursion has two equivalent semantics under the graph bisimu-
lation: bulk semantics and recursive semantics. The former is the promi-
nent feature of structural recursion, whereas the latter is the usual re-
cursive semantics with memoization. Informally, the bulk semantics for
rec(λ($l , $G).t)(G′) is that λ($l , $G).t is applied independently on all edges
of graph G′, then the results are joined together with ε-edges (as in the @
operation).

Example 7. Consider to apply the structural recursive function a2d xc to
the graph in Figure 2(a). Applying the function to each edge from i to j
gives a subgraph containing a graph with an edge from Sij to Eij (where the
dotted edge denotes an ε-edge), then marking the root with an input marker,
and finally joining the nodes with ε-edges according to the original graph
shape and input/output markers yields the graph in Figure 8(a), which is
equivalent to the graph in Figure 8(b) if we remove all ε-edges.

3.3 From UnQL to UnCAL

Every UnQL expression can be mapped to structural recursion in UnCAL,
which has been shown in (Buneman et al. 2000). We first informally explain

13

this mapping transformation, and then clarify the property of the obtained
UnCAL programs that will serve as the target of our bidirectionalization in
Section 4.
As we have shown that structural recursion in UnQL can be mapped

to that in UnCAL before, to show that every UnQL expression can be
mapped to structural recursion in UnCAL, it is sufficient to show that the
select-where expression can be expressed in terms of structural recursion
(in UnQL). This can be achieved by three steps. First, we can unnest
patterns in the where-clause such that each pattern is in the simple form of
{Lp : $G} in $G with the following three rules.

where {Lp1 : Gp1, ..., Lpn : Gpn} in $G
−→ where {Lp1 : Gp1} in $G , . . . , {Lpn : Gpn} in $G

where {Lp : a} in $G
−→ where {Lp : $G ′} in $G , {a : $G ′′} in $G ′

where {Lp : Gp} in $G
−→ where {Lp : $G ′} in $G , Gp in $G ′

Note that $G ′ and $G ′′ are fresh variable names in the above rules.
Then, an UnQL query with simple patterns (not regular path patterns)

can be translated into structural recursions with condition in UnQL.

select T where −→ T
select T where {Lp : $G1} in $G2, rest
−→let sfun f {Lp : $G1} = select T where rest

in f ($G2)
select T whereL1 = L2, rest
−→if L1 = L2 then select T where rest else {}

When the patterns are regular path patterns, they are translated into
structural recursions. The idea of translation is to express a regular path pat-
tern as an NFA (Non-deterministic Finite Automaton), associate a function
to each state, and produce a mutually defined structural recursion according
to the transition of the NFA.
As a simple example, consider the regular path pattern _*.a.b, an

equivalent non-deterministic automaton1 has five states and the following
transitions :

s1
Any−−−→ s4, s1

Any−−−→ s5, s1
a−→ s3, s3

b−→ s2, s4
a−→ s3,

s5
Any−−−→ s4, s5

Any−−−→ s5, s5
a−→ s3

1There are several equivalent automata, of course.

14

The initial state is s1 and the terminal state is s2. So, the following mutual
structural recursion can be defined.

sfun f1{a : $G} = f3($G)
| f1{$l : $G} = f4($G) ∪ f5($G)

sfun f2{$l : $G} = {}
sfun f3{b : $G} = f2($G) ∪ $G
| f3{$l : $G} = {}

sfun f4{a : $G} = f3($G)
| f4{$l : $G} = {}

sfun f5{a : $G} = f3($G)
| f5{$l : $G} = f4($G) ∪ f5($G)

In general mutually defined recursive functions are translated into a
single recursive function(Hu et al. 1997). For UnQL/UnCAL, the new single
recursive function is defined using markers. Each marker corresponds to
a function that is mutually defined with others. Output markers are used
instead of recursive calls in the body of the function. This new function
returns a tuple of results of each function, represented by markers, that is
mutually defined with others.
For example, consider the following mutual recursive definition shown in

Section 2.2;
sfun h {b : $G} = {b : a2e($G)}
| h {$l : $G} = h($G)

sfun a2e {a : $G} = {e : a2e($G)}
| a2e {$l : $G} = {$l : a2e($G)}

This function is translated into single recursive function as follows;

sfun f {$l : $G} = g($l , $G) @ f($G)

where g($l , $G) is defined as follows;

g(a, $G) = ((&z1 := &z1) ⊕ (&z2 := {e : &z2}))
g(b, $G) = ((&z1 := {b : &z2}) ⊕ (&z2 := {b : &z2}))
g($l , $G) = ((&z1 := &z1) ⊕ (&z2 := {$l : &z2}))

Note that markers &z1 and &z2 correspond to functions h and a2e, respec-
tively. Recall that an output node vcan be regarded as a “context-hole” of
grapshs and append of graphs (t1@ t2) plugs the input nodes in t2 into their
corresponding output nodes in t1. Recall also that disjoint union (t1 ⊕ t2)
performs componentwize union of t1 and t2.
As shown in Section 3.1, the above form of single structural recursive

function f is descrived by rec as

rec(λ($l , $G). if $l = a then ((&z1 := &z1) ⊕ (&z2 := {e : &z2}))
else if $l = b then ((&z1 := {b : &z2}) ⊕ (&z2 := {b : &z2}))

else ((&z1 := &z1) ⊕ (&z2 := {$l : &z2}))

15

Note that append operator @ used in the form using sfun is dropped.

Lemma 1 (Target UnCAL). The mapping algorithm from UnQL to UnCAL
produces an UnCAL expression with the following syntactic properties.

• For recursion application rec(λ($l , $G).t)(t′), the argument t′ should
be a variable, which implies no intermediate graphs.

• For disjoint union (t1⊕ t2), t1 and t2 should be in the form of &x := t′.

• For append (t1 @ t2), the left operand should be an output marker
and the right operand should be an application of structural recursion
(&y @ rec(λ($l , $G). T)(T)).

• No cycle(t) expression should appear.

4 Bidirectionalization of UnCAL

In this section, we show that an UnCAL program can not only be evaluated
forwardly as usual, but also be evaluated backwardly to reflect updates from
the result to the source. We shall give a bidirectional semantics for each
construct of UnCAL. Note that the backward semantics mentioned first can
cope with general in-place updating and deletion, but not insertion. We
extend the semantics of if and rec to cope with insertion in Section 4.5, and
finally prove well-behavedness of our bidirectional semantics.

4.1 Bidirectional Properties

Forward evaluation (often called get in the literature) of an UnCAL term
t computes a result graph G = [[t]]ρ (view), under a variable binding envi-
ronment ρ (input) which is a mapping from variables to graphs. Backward
evaluation (or put) goes backward. Given an original input environment ρ
and a possibly modified view graph G′, it computes an updated environment
ρ′ = 〈〈t〉〉ρG′ .
The following two important properties define the well-behavedness of a

pair of forward and backward evaluations, which are essentially the same as
those in lenses (Foster et al. 2005).

[[t]]ρ = G implies 〈〈t〉〉ρG = ρ (GetPut)

〈〈t〉〉ρG′ = ρ′ implies [[t]]ρ
′
= G′ (PutGet)

The (GetPut) property says that no change on the view graph should give
no change on the environment, while the (PutGet) property says that the
backward computation computes a new environment ρ′ from G′ in such a
way that applying the forward computation under ρ′ again should give the
same G′.

16

4.2 Embedding Trace Information in Structured Node IDs

Different from unidirectional computation, the forward evaluation in the
context of bidirectional computation should keep trace information for later
backward evaluation. Our forward evaluation rules will refine (extend) the
original semantics of UnCAL. Basically, each graph constructor expression
is straightforwardly evaluated to the graph as it denotes. However, not
only constructing the output graph structure, we also embed some “trace”
information in each node of the output graph to guarantee the correct
backward evaluation. The nodes of the output graph are identified by what
we call the Structured IDs that describe where the nodes came from.
Consider the upper part of Figure 9, which demonstrates evaluation

of G1 ∪ G2 (a union of two graphs). For later backward evaluation, we
need to decompose the result graph into two while keeping the original
correspondence. And this is difficult because our graphs are unordered. Our
idea is to assign structured IDs to the nodes of the output graph so that
together with information of the original inputs G1 and G2 the output graph
can be decomposed.
Formally, the structured ID is defined as follows.

StructuredID ::= OriginalID
| InC CodePos
| InC∪ CodePos Marker
| HubCodePos StructuredID Marker
| FrECodePos StructuredID Edge

where Edge = StructuredID × Label × StructuredID , CodePos is the set of
position identifiers that are uniquely assigned to all syntactic nodes of the
UnCAL program, and OriginalID is the set of identifiers that are uniquely
assigned to all nodes of the input graph. All the structured IDs are to denote
the output nodes2 of UnCAL transformations. The ID (InC p) denotes an
output node created from a constant expression like {} or {a : {}}. The
value p is the unique identifier assigned to each syntactic node of UnCAL
expressions. For example, there are two syntactic nodes in the constant
expression {a : {}}: the whole expression itself and the subexpression
{}. They are assumed to have distinct position identifiers, say, p1 and p2

respectively, and the corresponding output nodes are named distinctly as
(InC p1) and (InC p2). The ID (InC∪ p &m) is similar to (InC p) but also
indexed with the marker &m. This type of ID is used for representing an
output graph of an union-expression, as explained later. Last but not least,
the IDs of the from (FrEp i e) and (Hubp v m) are used for constructing the
output nodes of the structural recursion: rec. Recall that the bulk semantics
of the structural recursion first evaluates the recursion body at every edge e

2Input/output here denotes input/output of transformations. We say “input/output
marker node” for node with markers.

17

of the input graph, and then joins the results at the point of input/output
markers. Now, suppose the evaluation of the body expression at the edge e
generated an output node with ID i. We augment such output node with
the ID (FrEp i e) where p is the position of the rec expression itself. The
ID (Hubp v &m) denotes the output node used for joining the results of bulk
evaluation of structural recursion at the position p.
It is worth noting that our assignment of structured IDs makes an ID

independent of actual evaluation order. In this sense, the ID assignment
strategy is functional and side-effect free. This fact helps to simplify the our
bidirectional semantics.

4.3 Issues on Backward Evaluation

Similarly to the usual put, the backward semantics ρ′ = 〈〈t〉〉ρG′ requires the
original input environment ρ as well as the modified target G′. The origi-
nal input is used for decomposing the target so as to define the backward
semantics inductively. For example, to compute 〈〈t1 ∪ t2〉〉ρG′ , we first decom-
pose G′ to two parts G′

1 and G′
2 and then inductively compute ρ′1 = 〈〈t1〉〉ρG′

1

and ρ′2 = 〈〈t2〉〉ρG′
2
. For this decomposition, we need the original, unmodified

version of G′
1 and G′

2, i.e., G1 = [[t1]]
ρ and G2 = [[t2]]

ρ. This is the first reason
why we take the original ρ as the input here.
Another reason is to use the original environment for merging the up-

dated environments. In general, multiple environment produced by backward
evaluation are merged by �ρ, with original environment ρ considered. Con-
flicts are resolved in this operator as follows: if no difference between the
original environment and the result of backward evaluations is detected, it
simply returns the original environment. Otherwise, the result of backward
evaluation takes precedence, provided that (possibly multiple) result(s) are
consistent with the original environment. It fails if none of the condition
hold.

4.4 Formal Definition of Bidirectional Semantics

In this section, we give formal definition of bidirectional semantics for
UnCAL, where only in-place updating and deletion is considered. We will
extend the bidirectional semantics so that insertion can be coped with in
Section 4.5.

4.4.1 Bidirectional Evaluation of Simple Expressions

We propose a set of rules for describing both forward and backward evalu-
ations of expressions in UnCAL, guaranteeing that the forward and back-
ward evaluations satisfy the bidirectional properties. We start by showing
how graph constructors can be computed forwardly and backwardly thanks

18

modify

ε ε
&

∪

∪

ac bcd

&

G1

bc

&

ac d

ε ε
&

bcac d
x

bcac d
x

& &

G1

G′2G′1

decomp

G

G′

Figure 9: Example for Bidirectional Computation of Union

to the ε-edges and the structured IDs. Then we show that this bidirectional
evaluation of graph constructors can be extended to bidirectional evalua-
tion of UnCAL expressions except for the structural recursions. Finally, we
tackle the problem of bidirectional semantics for structural recursions. In
the following definitions, p denotes position identifier.

Nullary constructors {} (single node graph), &y (a node with output
marker) and () (empty graph) construct constant graphs in their
forward computation. For backward computation, they are constant
and hence accept no modification on the result view.

[[{}]]ρ = ({InC p}, ∅, {(&, InC p)}, ∅)
〈〈{}〉〉ρG′ = ρ if G′ = [[{}]]ρ

[[&m]]ρ = ({InC p}, ∅, {(&, InC p)}, {InC p, &m})
〈〈&m〉〉ρG′ = ρ if G′ = [[&m]]ρ

[[()]]ρ = (∅, ∅, ∅, ∅)
〈〈()〉〉ρG′ = ρ if G′ = [[()]]ρ

{ : } prepends an edge on top of the root of the second operand graph in its
forward computation. Backward computation detaches the (possibly
modified) edge from the top of the modified graph. Other modification

19

on the graph is reflected to the other operand G2 (as G′
2).

[[{t1 : t2}]]ρ =
({InC p} ∪ V2, E1 ∪ E2, {(&, InC p)}, O2)
where E1 = {(InC p, l1, I2(&))}

(V2, E2, I2, O2) = [[t2]]
ρ

l1 = [[t1]]
ρ

〈〈{t1 : t2}〉〉ρG′ = 〈〈t1〉〉ρl′1 �ρ 〈〈t2〉〉ρG′
2

where l1 = [[t1]]
ρ

G2 = [[t2]]
ρ

(l′1, G′
2) = decomp{l1:G2}(G

′)

Here, the decomposition function is defined as follows:

decomp{l1:G2}(G
′) =

(l′1, (V ′ \ {r′}, E′ \ {e′}, {(&, v)}, O′))
where (V2, E2, {(&, v)}, O2) = G2

(V ′, E′, {(&, r′)}, O′) = G′

e′ = the unique edge in E′

of the form (r′, l′1, v).

The modified output graph G′ is decomposed into its unique root edge
e′ = (r′, l′1, v) and the rest of the graph rooted at v. If G′ have more
than one edges from the root node or the new root v does not match
the root node of the original result G2, the backward evaluation fails.

∪ unifies two graphs by connecting input nodes in two graphs with matching
markers using ε-edges in forward computation. Its backward computa-
tion removes these edges and restores the operand graphs while taking
modifications to them into account. Consider an example in Figure 9.
The edge labeled x (bold arrow) is added on the view. Backward com-
putation removes these ε-edges to restore original input nodes, and
compute modified operands by collecting reachable parts from each of
the input nodes3. The added edge is reachable from the input node
of G′

2, so the modification belongs to the second operand. For well-
behavedness, backward computation checks if ε-edges from the input
nodes are changed, and fails if that is the case. Note that the forward
computation could have been glued the two input nodes together, but
doing so would make splitting of the view difficult, since both of the

3Reachable parts from a given node can be computed by traversing edges from that
node. reachable() starts from input node of given graph instead of a given particular node.

20

operands can be reachable from the glued node.

[[t1 ∪ t2]]
ρ = (V,Eu ∪ E1 ∪ E2, Iu, O1 ∪O2)

where V = Vu ∪ V1 ∪ V2

(V1, E1, I1, O1) = [[t1]]
ρ

(V2, E2, I2, O2) = [[t2]]
ρ

M = inMarkers(t1) = inMarkers(t2)
Vu = {InC∪ p &m | &m ∈M}
Eu = {(InC∪ p &m, ε, v) | (&m, v) ∈ I1}
∪ {(InC∪ p &m, ε, v) | (&m, v) ∈ I2}

Iu = {(&m, InC∪ p &m) | &m ∈M}
〈〈t1 ∪ t2〉〉ρG′ = 〈〈t1〉〉ρG′

1
�ρ 〈〈t2〉〉ρG′

2

where G1 = [[t1]]
ρ

G2 = [[t2]]
ρ

(G′
1, G

′
2) = decompG1∪G2

(G′)

The decomposition function ensures that the root node of the modified
graph G′ is an origin of a bunch of ε-edges, whose destination node
came from the root node of either the original G1 or the G2. G1 \ G2

denotes componentwise set difference.

decompG1∪G2
(G′) =(

xreachable(G′
1, G1), xreachable(G′

2, G2)
)

where (V ′, E′, I ′, O′) = G′

(Vi, Ei, Ii, Oi) = Gi

G′
i = reachable((V ′, E′, Ii, O

′))
satisfying

inMarkers(G1) = inMarkers(G2)
∀&m ∈ inMarkers(G1), (&m, r′) ∈ I ′,
(r′, ε, v′) ∈ E′ :
(&m, v′) ∈ I1 ∪ I2

xreachable(G′, G) =
(V r ′ ∪ V u, Er ′ ∪Eu, Ir ′ ∪ Iu, Or ′ ∪Ou)

where (V r ′, Er ′, Ir ′, Or ′) = reachable(G′)
(V u, Eu, Iu, Ou) = G \ reachable(G)

21

⊕ performs componentwise union in its forward computation. For backward
computation, it is like ∪, except that no ε-edge is involved.

[[t1 ⊕ t2]]
ρ = (V1 ∪ V2, E1 ∪ E2, I1 ∪ I2, O1 ∪O2)

where (V1, E1, I1, O1) = [[t1]]
ρ

(V2, E2, I2, O2) = [[t2]]
ρ

〈〈t1 ⊕ t2〉〉ρG′ = 〈〈t1〉〉ρG′
1
�ρ 〈〈t2〉〉ρG′

2

where Gi = [[ti]]
ρ

(G′
1, G

′
2) = decompG1⊕G2

(G′)
decompG1⊕G2

(G′) = decompG1∪G2
(G′)

without satisfying
condition

@ appends two graphs by connecting the output nodes of the left operand
with corresponding input nodes of the right operand with ε-edges in its
forward computation. Currently, we allow this operator to be used only
for the projection of one component of the result of structural recursion
by &zi@ rec(tb)(ta). Note that @ may introduce unreachable part in
the second argument, because of unmatched I/O nodes. Backward
computation carefully passes those parts backwards untouched to
avoid unnecessary failure because of inconsistency because these parts
are part of ordinary computation (computation on reachable parts)
before discarding by the @ operator. Note that users operating on
the view do not change these unreachable parts since these parts are
invisible for the users.

[[&m@t2]]
ρ = (V,E@ ∪ E2, {(&, InC p)}, O2)

where V = {InC p} ∪ V2

V1 = {InC p}
(V2, E2, I2, O2) = [[t2]]

ρ

E@ = {(InC p, ε, v) | (&m, v) ∈ I2}

〈〈&m@t2〉〉ρG′ = 〈〈t2〉〉ρG′
2

where (V ′, E′, I ′, O′) = G′

(V2, E2, I2, O2) = [[t2]]
ρ

E@ = {(InC p, ε, v) | (&m, v) ∈ I2}
G′

2 = (V
′ \ {InC p}, E′ \ E@, I2, O2)

(:=) distributes the marker on the left operand to each of the input marker
of the graph in the right operand, using the Skolem function “.” that
satisfies (&x.&y).&z = &x.(&y.&z) (associativity) and &.&x = &x.& =
&x (left and right identity) in its forward computation. Backward
computation, “peels off” the marker on the left hand side from each

22

of the input markers in G′ at the front.

[[&m := t1]]
ρ = (V1, E1, I,O1)

where (V1, E1, I1, O1) = [[t1]]
ρ

I = {(&m.&x, v) | (&x, v) ∈ I1}

〈〈&m := t1〉〉ρG′ = 〈〈t1〉〉ρG′
1

where G′
1 = (V

′, E′, I ′1, O′)
(V ′, E′, I ′, O′) = G′

I ′1 = {(&x, v) | (&m.&x, v) ∈ I ′}

($v) looks up variable binding from environment ρ. Backward computation
updates the binding.

[[$v]]ρ = ρ($v)
〈〈$v〉〉ρG′ = ρ[$v ← G′]

(if) first evaluates the conditional expression b and by the result it evaluates
either the then branch or the else branch in the forward computation.
For the backward computation, modification to the environment as a
result of modification to the view may change the branching behavior
(result of b). In order to make sure that well-behavedness still holds,
backward semantics chooses the branch in which a result of another
forward computation on the condition b agrees. To cope with possible
non-determinism where both branches agree, the branch taken in the
forward computation takes precedence. If neither of the branches agree,
the backward computation fails.

[[if b then t1 else t2]]
ρ = [[ti]]

ρ

where i = (if [[b]]ρ = true then 1 else 2)

〈〈if b then t1 else t2〉〉ρG′ = ρ′i′
where ρ′1 = 〈〈t1〉〉ρG′

ρ′2 = 〈〈t2〉〉ρG′
i = (if [[b]]ρ = true then 1 else 2)

i′ =

{
i if [[b]]ρ

′
i = [[b]]ρ

3− i if [[b]]ρ
′
3−i �= [[b]]ρ

It is worth noting that we have the following properties on the internal
graph representation when modification is applied on the view: (1) No ε-
edges are added or deleted.; (2) Markers are not added, deleted or changed.;
and (3) Unreachable parts are not modified. These properties are important
for (GetPut) and (PutGet) properties to hold. Besides, Property (2) is
a natural consequence of the rule for the output marker constructor &y.

23

fwd eachedge(ρ, tb, Ga=(, Ea, ,))

=


(e, [[tb]]

ρe)

˛̨̨
˛e ∈ Ea, label(e) �= ε,
ρe = ρ{$l �→ label(e), $g �→ subgraph(Ga, e)}

ff

composerec(G, (Va, Ea, Ia, Oa), M) = (Vbody ∪ Vhub, Ebody ∪ Espoke ∪ Eeps, I, O)
where Vbody = {FrEp e v | (e, (Ve, , ,)) ∈ G, v ∈ Ve}

Ebody = {(FrEp e u, l, FrEp e v) | (e, (, Ee, ,)) ∈ G, (u, l, v) ∈ Ee}
Vhub = {Hubp v &m | v ∈ Va, &m ∈ M}
Espoke = {(Hubp v &m, ε, FrEp e u) |

&m ∈ M, (e = (v, ,), (, , Ie,)) ∈ G, (&m, u) ∈ Ie}
∪ {(FrEp e u, ε,Hubp v &m) |

&m ∈ M, (e = (, , v), (, , , Oe)) ∈ G, (u, &m) ∈ Oe}
Eeps = {(Hubp v &m, ε, Hubp u &m) | (v, ε, u) ∈ Ea, &m ∈ M}
I = {(&n.&m, Hubp v &m) | (&n, v) ∈ Ia, &m ∈ M}
O = {(Hubp v &m, &n.&m) | (v, &n) ∈ Oa, &m ∈ M}

Figure 10: Core of the Forward Semantics of rec at Code Position p

Property (1) is required for the consistent decomposition of targets. Property
(3) is required to avoid unnecessary failure of backward computation by
interference of unreachable parts on reachable parts. They are also natural
from the user’s point of view since these components (ε-edge, markers and
unreachable parts) are all invisible to users.

4.4.2 Bidirectional Evaluation of Structural Recursion

In this section, we give bidirectional semantics for structural recursion rec.
For forward computation, rec expressions are interpreted in bulk semantics
as follows:

[[rec(λ($l , $g). tb)(ta)]]
ρ =

composerec(fwd eachedge(ρ, tb, Ga), Ga,M)
where M = inMarker(tb) ∪ outMarker(tb)

Ga = [[ta]]
ρ

where fwd eachedge and composerec is defined in Figure 10. Intuitively,
fwd eachedge evaluates the expression tb at each edge e of the argument
graph Ga and returns the set of result graphs. Then, composerec glues all
the graphs together along the structure of the input Ga.
Forward evaluation consists of the following steps. (1) Argument expres-

sion ta is computed to produce graph Ga. (2) By the fwd eachedge auxiliary
function, at every non-ε-edge e of Ga, new binding ρe is created so that $l
points to the label of e (denoted by label(e)) and $g points to the subgraph
(denoted by subgraph(Ga, e)) that is reachable from the target node of e.
(3) Forward computation of the body expression tb is conducted for each of
these bindings. (4) By the composerec auxiliary function, the results Ge are
combined to produce the final result.

24

bwd eachedge(ρ, tb,G′)

=
n
(e, 〈〈eb〉〉ρe

G′
e
)

˛̨
˛ (e,G′

e) ∈ G′, ρe = ρ{$l �→ label(e), $g �→ subgraph(e)}
o

decomprec(ρ, tb, (V
′, E′, I ′, O′), Ga, M)

=

8>>>>>>>><
>>>>>>>>:

(e, G′
e)

˛̨̨
˛̨
˛̨
˛̨̨
˛̨
˛̨

e ∈ Ea, label(e) �= ε,
ρe = ρ{$l �→ label(e), $g �→ subgraph(Ga, e)}
V ′

e = {w | (FrEp e w) ∈ V ′},
E′

e = {(w1, l, w2) | (FrEp e w1, l, FrEp e w2) ∈ E′},
I ′

e = {(&m, w) | (Hubp v &m,ε, FrEp e w) ∈ E′},
O′

e = {(w, &m) | (FrEp e w, ε, Hubp v &m) ∈ E′},
G′

e = (V ′
e , E′

e, I
′
e, O

′
e)

9>>>>>>>>=
>>>>>>>>;

where (Va, Ea, Ia, Oa) = Ga

G = fwd eachedge(ρ, tb, (Va, Ea, Ia, Oa))

merge(ρ, ta, (Va, Ea, Ia, Oa),R) = 〈〈ta〉〉ρ
G′

a

ρ

U{ρ′
e \ {$l �→ } \ {$g �→ } | (e, ρ′

e) ∈ R}
where Eeps = {(u, ε, v) | (u, ε, v) ∈ Ea}

(V ′′
e , E′′

e) = (V ′
e ∪ {u}, E′

e ∪ {(u, ρ′
e($l), root(I ′

e))})
for each e = (u, a, v) ∈ Ea with a �= ε,

(e, ρ′
e) ∈ R, (V ′

e , E′
e, I

′
e, O

′
e) = ρ′

e($g)
G′

a = (
S

V ′′
e , Eeps ∪ S

E′′
e , Ia, Oa)

Figure 11: Core of the Backward Semantics of rec at Code Position p

The composition by composerec produces two types of nodes. One is
Vbody, which is the set of nodes v of of each graph fragments Ge to be
combined. Note that, however, in order to keep the traceability, we augment
the structured node ID of v as FrEp e v recording the edge code ID p of the
rec expression and the input edge e where the node is created. Of course,
in the case of nested rec expressions, the ID v from the result of body
expression themselves may be structured already. Similarly, the set of edges
Ebody consists of edges from Ge with structured ID information added. The
other type of nodes is Vhub, which is used as connecting points of Ge’s. For
instance, let e1 = (v, a, u) and e2 = (u, b, w) sharing the node u, and the
recursion uses two markers &z1 and &z2. To connect Ge1 and Ge2 correctly,
nodes with output marker (x1, &z1) in Ge1 must be identified with nodes
with input marker (&z1, x2) in Ge2 (and similarly for &z2). To achieve this,
we prepare a node (Hubp v &z1) in Vhub, and connect all the output marker
nodes of Ge1 and the input marker nodes of Ge2 using ε-edges, which are
the Espoke edges. Finally, to keep the ε-edges in the input graph unchanged,
we connect by an ε-edge the hubs whose origin nodes are connected by an
ε-edge; this is the set of edges Eeps.

25

Next, our backward semantics is defined as follows:

〈〈rec(λ($l , $g). tb)(ta)〉〉ρG′ =
merge(ρ, ta, Ga,
bwd eachedge(ρ, tb, Ga,
decomprec(ρ, tb, G′, Ga,M)))

where M = inMarker(tb) ∪ outMarker(tb)
Ga = [[ta]]

ρ

Note the duality between the forward semantics. Backward semantics first
decomposes by decomprec the modified result graph G′ into pieces of graphs,
which is intuitively an inverse operation of comprec. Each element of the de-
composition is the (possibly modified) subpart G′

e of G
′, which corresponds

to the forward computation Ge. Then, in bwd eachedge, we carry out back-
ward computation on each edge and compute the updated environment ρ′e.
Finally, these environments are merged into the updated environment ρ′ of
the whole expression. The merge function does two works. First, by comb-
ing the information ρ′e($l) and ρ′e($g) from the updated environments, it
computes the modified argument graph G′

a
4. Then we inductively carry out

backward evaluation on the argument expression to obtain another updated
environment ρ′a. This ρ′a and all ρ′es are merged into ρ′.
Let us explain in more detail the definition of decomprec, which is the

key point of the backward evaluation.
The function first extract from result graph G′ nodes V ′

e and edges E′
e

that belonging to each edge e by matching structured ID FrEp e . Note
that we require nodes that are newly inserted to the view also have this
structure, so that these nodes are also passed to the backward evaluation of
the recursion body. Input and output nodes with marker &m are recovered
by selecting those pointed from/to hub nodes having structure Hub &m.
Top-level constructors of structured ID are erased so that we can inductively
compute the backward image from the body expression.
Note that semantics uses node identities in computation, while graph

data model assumes value equivalence based on bisimulation. Update de-
tection or conflict resolution in �ρ basically uses node identities, however,
bisimulation equivalence may be used to resolve conflicts at the graph level
instead of per node and edge basis, to cope with complex updating on the
view.

4Merging operation in
S

does not consist of simple set unification operation. Detail is
discussed in Section B in the appendix.

26

Example 8 (Edge Renaming). The following transformation a2b replaces
edge label a with b and leaves other labels unchanged.

a2b =
rec(λ($l , $G). & :=

if $l = a then {b : (&)1}2
else {$l : (&)3}4)($db)6

Above, expression t at code position p is written by tp. Let $db, which
represents a source database, be the following graph.

s = ��������1
c

��
a �� ��������2

Then, the transformation result with ε-edges and structured IDs is as follows.

G =

�� ���� ��Hub6 1 &
�� ���� ��

�� ��FrE6 (InC 4) (1, c, 2)
c��

�� ��
�� ��FrE6 (InC 2) (1, a, 2)

b���� ��
�� ��FrE6 (InC 3) (1, c, 2)

��

�� ��
�� ��FrE6 (InC 1) (1, a, 2)

���� ���� ��Hub6 2 &

The graph is bisimilar to the following graph.

	
��
���
c

��
b ��	
��
���

According to the backward semantics of the transformation a2b, if we
modify graph G to G′ by changing the edge label c to d, then 〈〈a2b〉〉{$db �→s}

G′
returns binding {$db �→ s′} where

s′ = ��������1
d

��
a �� ��������2 .

The edge c in the source is changed to d successfully.
If the subgraph in the view is changed as

�� ��
�� ��FrE6 (InC 2) (1, a, 2)

b���� ���� ��FrE6 (InC 1) (1, a, 2)
−→

�� ��
�� ��FrE6 (InC 4) (1, a, 2)

e���� ���� ��FrE6 (InC 3) (1, a, 2)

then, according to the bidirectional semantics of if , the source is changed to
the following graph.

��������1
c

��
e �� ��������2

27

Example 9 (Extracting Subgraph). The following transformation at ab
extracts all the subgraphs that can be reachable from the root by path a.b.

at ab =
rec(λ($l , $g).

if $l = a then
rec(λ($l ′, $g ′).

if $l ′ = b then $g ′ else {}1)($g)2
else {}3)($db)4

Then, we can reflect any changes on the extracted graphs to the correspond-
ing source as long as the changed graph has appropriate structured IDs.

Let $db be graph ��������1 a ����������2 b �� G. Then the reachable part of the trans-
formation results with structured ID becomes

�� ���� ��Hub4 1 & ���� ���� ��FrE4 (Hub2 2 &) (1, a, 2) �� G′

where subgraph G′ is obtained by replacing node v in G with
FrE4 (FrE2 v (2, b, r)) (1, a, 2) where r is the root of G. Any modifi-
cation on G′ can be reflected to G in the source.

Example 10 (Customer2Order). The transformation mentioned in Sec-
tion 2.3 is translated into UnCAL expression that has nesting of rec similar
to that in Example 9. Concrete UnCAL expression can be seen in Sec-
tion C in the appendix. Since extracted subgraph can accept arbitrary
updates, if we modify the label 16/10/2008 of the edge from node 7 to
node 6 in graph gord in Figure 6, backward transformation systematically
finds the corresponding edge and modify the edge from node 7 to node
6 in gcus in Figure 5, because the modified part is an extracted subgraph
reachable from the root by path customer.order.date. Subgraphs that are
reached by the paths customer.order.no, customer.order.order of.name
and customer.order.order of.add can be updated similarly.

4.5 Insertion Reflection based on ε-edge/ID Structure

So far the bidirectional semantics can only cope with in-place updating and
deletion – modifications on edge labels or updating and deletion on extracted
subpart of the original graph. However, except for the extracted subpart, it
has the great limitation that no edge can be added to the original graph
because it tightly uses the structures of ε-edges/IDs, which also enables
us the backward semantics. In this section, we show how to extend it
moderately to coped with insertion.
In fact, supporting insertion in bidirectional transformation is challeng-

ing because the inserted part has no correspondence in the original source.
Foster et al. (2005) and Bohannon et al. (2008) solve this problem by ex-
plicitly defining a create function to create the “original” data only from

28

a inserted subpart. Matsuda et al. (2007) allow insertion only if the “origi-
nal” data is uniquely determined by the inserted subpart. Liu et al. (2007)
treat insertion only on the results of “map” but there is no guarantee of
bidirectional properties in the framework.
Our insertion handling is inspired by those in Liu et al. (2007) and

Matsuda et al. (2007). Like Liu et al. (2007), we treat insertion only on
the result of rec. And, we follow Matsuda et al. (2007), we use ε-edge/ID
structure as “complementary” information to uniquely create source data.

�� ���� ��Hub6 1 &
���� ��

�� ��FrE6 (InC 4) (1, c, 2)
c���� ��

�� ��FrE6 (InC 3) (1, c, 2)
���� ���� ��Hub6 2 &

Let us explain our basic idea with Example 8. If $db
is a graph ��������1 c ����������2 , then the transformation results in
the graph on the right. In our insertion handling, we
consider what happens if there exists an extra edge
between two nodes, i.e., the transformation result of
the following graph.

��������1
c

��
??? �� ��������2

Instead of inserting single edge, we consider the transformation result of
the graph with inserted edge (1, ???, 2) that have undetermined label. Con-
cretely, the input of the backward transformation with insertion handling is
the following graph.

�� ���� ��Hub6 1 &
�� ���� ��

�� ��FrE6 (InC 4) (1, c, 2)
c��

�� ��
�� ��FrE6 (InC 2) (1, ???, 2)

b���� ���� ��FrE6 (InC 3) (1, c, 2)
��

�� ���� ��FrE6 (InC 1) (1, ???, 2)

���� ���� ��Hub6 2 &

According to the semantics of rec, insertion of the FrE-subpart implies
insertion of the edges. The structured ID in the inserted graph contains
??? because at the time we do not know what is the edge that generates the
inserted subgraph. Hence, by the backward transformation discussed here,
we estimate a concrete label of the inserted edge. Because of the structured
ID of the inserted subgraph, we can know that inserted subgraph comes from
true-branch of the following if -expression if $l = a then {b : &1}2 else {$l :
&3}4 Since condition $l = a must be true to obtain the inserted subgraph,
the backward transformation replaces the label ??? of $l by a. Hence, we
obtain the following graph by the insertion.

��������1
c

��
a �� ��������2

In the rest of section, we first discuss the modification of the backward
semantics for insertion reflection. The backward semantics of rec and if will
be changed: the new semantics of rec handles inserted subpart, and the

29

new semantics of if estimates a concrete label to replace ???. After that, we
discuss expressive power of our insertion reflection.
Note that ??? may cause the failure of the forward transformation; if

it appears in the condition of if -expression, we cannot determine which
branch to use. Recall that some backward semantics of an expression uses
the forward semantics of its subexpression. Note that the failure of forward
transformation do not mean the failure of the backward transformation
immediately. When they are used for graph decomposition in a backward
transformation, the backward transformation fails.

4.5.1 Backward Semantics of rec for Insertion Reflection

The modification on the rec for insertion reflection is very small. Since the
IDs of an inserted subgraph must have the form FrE (, ???,), we can
easily split the inserted subpart from a modified result of rec. The definition
of decomprec in Figure 11 changes a bit as follows.

decomprec(. . . (V ′, E′, I ′, O′) . . .) ={
. . .

∣∣ e ∈ Ea . . . ρe = ρ{. . . $g �→ subgraph(Ga, e)
}

where . . .

−→

decomprec(. . . (V ′, E′, I ′, O′) . . .) ={
. . .

∣∣ e ∈ E′
a . . . ρe = ρ{. . . $g �→ subgraph(G′

a, e)
}

where E′
a = Ea

∪ {(u, ???, v) | FrEp (u, ???, v) ∈ E′}
G′

a = (Va, E
′
a, Ia, Oa)

. . .

The subgraph is performed on G′
a, which contains edge (u, ???, v), instead

of Ga because to guarantee PutGet we must ensure that the inserted edge
does not affect other part of the output graph (V ′, E′, I ′, O′).

4.5.2 Estimating Label of Edge to be Inserted

There are only two places that backward transformation can replace ???
with a concrete value.

• Use of label variable $l caused by rec.

• Condition such as $l = a in if .

Since the semantics of the former is already described in the previous section,
we discuss the latter here.

30

Here, we only write the formal definition of the backward semantics of if
where the evaluation result of condition is undetermined because of variable
$l with ??? in the expression.

〈〈if b then t1 else t2〉〉ρG =


Fail if [[b]]ρ
′′
i = ??? for i = 1, 2

ρ′′1 if [[b]]ρ
′′
1 = true

ρ′′2 if [[b]]ρ
′′
2 = false

where ρ′1 = 〈〈t1〉〉ρG
ρ′2 = 〈〈t2〉〉ρG
ρ′′1 = refine(ρ′1, b)
ρ′′2 = refine(ρ′2, not b)

Above, refine(ρ, b) is a function to be used to refine the environment ρ by
replacing ??? with a concrete value so as to make the evaluation result b to
be true.
There are many choices of refine(ρ, b). A strong approach would be to

use some constraint solver. Instead, we take a more lightweight choice that
cares a condition of the form $l = v or $l �= v and fixes the value of
$l even though there are multiple possibilities. For example, refine({$l �→
???}, $l = a) returns {$l = a} while refine({$l �→ ???}, $l �= a) returns
{$l �→ bogus} where bogus is magically chosen value to suffice $l �= a. Note
that refine({$l �→ ???, $r = a}, $l = $r) returns {$l �→ a, $r = a} because
we can know the concrete value of $r . To guarantee PutGet, refine fails if
it encounters expression such as $l = $r where both $l and $r are bound to
???.

4.5.3 Discussion of Insertion Reflection

As we have shown with Example 8, the insertion reflection method here
work well for single rec. However, the insertion reflection method does not
work for the nested rec such as that in Example 9.
The main reason of the limitation is that the one graph can be traversed

more than once by nested rec; since the backward transformation reflect the
concrete graph to the source by each traverse, the reflection would conflict
for each traverse.
Let us consider the transformation of Example 9. Let $db be a graph

with isolated three nodes ��������1 , ��������2 and ��������3 . Then, the transformation result
consists of three hub nodes of the form Hub4 & but does not have any
edge. If we want to insert something to the view, we must insert a.b path to
the source.
To insert a.b, we consider the transformation result of $db = ��������1 ??? ����������2 ??? ����������3

and try to replace the first ??? with a and the second with b by the backward
transformation. Hence we must consider the backward transformation of the

31

following graph.

�� ���� ��& : Hub4 1 &
���� ��

�� ��FrE4 (Hub2 2 &) (1, ???, 2)
���� ���� ��FrE4 (FrE2 3 (2, ???′, 3)) (1, ???, 2)

�� ��
�� ��FrE4 (Hub2 3 &) (1, ???, 2)

�� ���� ��Hub4 2 &
���� ��

�� ��FrE4 (InC 3) (2, ???′, 3)

�� ���� ��Hub4 3 &

Here, for presentation, we denote ??? to be replaced by a and b by ??? and
???′ respectively.
However, the insertion reflection fails due to the following two problems.

• The backward transformation of the outer rec calls the backward
transformation of rec-body for FrE4 (1, ???, 2) nodes. However, the
backward transformation of rec-body fails because of mismatch of hub
nodes of the inner rec. The Vhub of the inner rec in the original data
is Hub2 2 & (hub nodes of reachable part of node 2), while the hub
nodes of the output graph are Hub2 2 & and Hub2 3 &.

• The backward transformation of the outer rec tries to estimate the
label of inserted edge. If the first problem is solved well, we can
estimate the label of the edge (1, ???, 2) from the condition $l = a.
However, the estimation of the second edge (2, ???, 3) by the outer rec
can replace ??? with label different from b, which causes the failure
by inconsistent environement in the later step.

There would be many approaches towards the problems. Preprocessing
UnCAL expression using fusion method to flatten nested rec to one flat rec
avoids the problems. However, if the transformation has “join”, in which
inner rec uses bound variable of outer rec, it is hard to flatten nested recs.
Even when the fusion method is not applicable, the first problem would

be relatively easy to solve. If the view contains an extra hub node Hubp v ,
we can safely assume that the node comes from the new or existing node
v. Since the original graph is available in backward transformation, we can
know whether a node is new or existing. On the contrary, more discussion is
needed to solve the second problem. The second problem seems to be solved
by changing backward semantics to calculate bindings that maps variable to
a set of values and with constraints on the variables. However, in addition
to the problem of choosing appropriate description of such sets, it makes the
guarantee of PutGet property much and much harder.

• We must give a representation of “set” of variables and “constraints”.
Since we have variable-to-variable comparison as $l = $r , the inter-
variable constraint must be cared.

32

• Environment merging operator � must consider the “sets” and “con-
straints”.

Note that approximation by wider (less constrained) set may not work. Since
the sets and the constraints represents the set of sources of an output graph,
the approximated set might be too wide to guarantee PutGet.
One may think that it is also a problem that the insertion here does

not consider insertion of nodes. However, in contrast to the above two
problems, the insertion of node is easily solved because an isolated node
in the source is always transformed to an isolated hub node in the view by
rec. However, because the first problem above, we can use the inserted node
only in outermost rec.
Since the essence of difficulties of insertion reflection in Customer2Order

that appeared in Section 2.3 is contained in insertion reflection in Example 9,
we hardly insert subgraphs in Customer2Order because of the same reasons.
To give an appropriate and reasonable solution to the problem is one of our
future work.

4.6 Main Theorem

Now that semantics of all UnCAL expressions are defined, we summarize
our main result as the following theorem. See section A in the appendix for
the proof of the theorem.

Theorem 2. Every bidirectionalized UnCAL expression satisfies (PutGet)
and (GetPut) properties, provided that its forward and backward evaluation
succeeds.

5 Implementation and Experiments

The prototype system has been implemented in OCaml and is available
online5. One can run UnQL queries both forwardly and backwardly. In
addition to the examples in Buneman et al. (2000), we have tested the
following three non-trivial examples, showing its usefulness in software
engineering and database management.

• Customer2Order: a case study in the textbook on model-driven soft-
ware development (Pastor and Molina 2007).

• PIM2PSM: a typical example of transforming a platform independent
object model to platform specific object model.

• Class2RDB; a non-trivial benchmark application for testing power of
model transformation languages (Bezivin et al. 2005).

5http://www.biglab.org

33

All of them demonstrate the effectiveness of our approach in practical
applications.
In our implementation, we carefully treat ε-edges, unreachable parts

introduced during operations related to markers, and retrieval of edges or
nodes of interest, which greatly affect the performance. Bad treatment would
hinder large scale UnQL queries to evaluate in bidirectional mode6 in a
reasonable amount of time. Several orders of magnitude speed-up has been
achieved since our initial implementation by the following optimizations.

Reduction of the number of ε-edges As mentioned in the UnQL
paper (Buneman et al. 2000), ε-edges are generously generated during
evaluation, especially in rec. It makes evaluation process slow due to growth
of input size. Removing ε-edges during evaluation does no harm on forward
semantics because of bisimulation equivalence. However, since ε-edges play
an important role in backward evaluation, they are not freely omitted in our
bidirectional settings. Moreover, a straightforward implementation of the
removal algorithm (Buneman et al. 2000) may introduce additional edges,
which may harm backward evaluation. Towards prudent removal of ε-edges
suitable for backward evaluation, our ε-removal algorithm glue source and
destination nodes of ε as long as bisimulation equivalence is not violated.

Pruning of unreachable nodes @ and rec may leave unreachable nodes
if some input and output nodes are left unconnected due to mismatch of
markers. This mismatch happens typically in the case of projection of graph
components &zi by idiom &zi @ g and in the case of @ in the definition of
rec in rec(λ($l , $g).tb)(l : g) = tb(l, g) @ rec(tb)(g). Typical usage of rec
includes tb with no output marker, where actual recursion below the first
level from the input nodes — subgraphs that is not reachable by traversing
only one edge — is not necessary because the @ does not connect the first
and second arguments due to the lack of matching markers. This opens
optimization opportunities; not to evaluate tb for the input graph that is
lower than the first level. Performance improvement was significant for the
forward evaluation.

Indexing As seen in the formal notion of bulk semantics composerec and
decomprec, pattern matching on edges for the entire graph is often needed.
Constructing maps from node identifiers to the sets of associated incoming
and outgoing edges has been effective to improve performance on both
forward and backward directions.

6 Related Work

In addition to the related work in the introduction, we discuss other most
related work.

6Note that we preserve every result of forward computation in bidirectional mode.

34

Bidirectional transformation has been discussed as view updating prob-
lem in the database community. Bancilhon and Spyratos (1981) proposed a
general approach to the problem. They introduced an elegant solution based
on the concept of constant complement view which enables recovery of lost
information of the sources. It has been applied to bidirectional transforma-
tion on relational database (Cosmadakis and Papadimitriou 1984; Laurent
et al. 2001; Lechtenbörger and Vossen 2003) and tree structures (Matsuda
et al. 2007). However, this approach assumes the presence of automatic in-
verse transformation, which makes it difficult to use.
Foster et al. (2005) and Bohannon et al. (2008) proposed the first linguis-

tic approach to bidirectional transformation. They developed some domain
specific languages for supporting development of bidirectional transforma-
tion on strings and trees. However, their approach is limited to strings and
trees, and difficult to be applied to graph transformation due to graph-
specific features such as circularity and sharing.
In the context of software engineering, there are several work on bidirec-

tional model (graph) transformation (Ehrig et al. 2005; OMG 2005; Jouault
and Kurtev 2006), which can deal with a kind of graph structures. As pointed
by Stevens (2007), there lacks clear formal semantics of bidirectional model
transformation and there is no powerful bidirectionalization method yet that
can be used to automatically derive backward model transformations from
forward model transformations so that both transformations form a consis-
tent bidirectional model transformation. This calls for a more serious study
on bidirectional graph transformation, which actually inspired the work in
this paper.
The concept of structural recursion is not new and has been studied

in both the database community (Breazu-Tannen et al. 1991) and the
functional programming community (Sheard and Fegaras 1993). However,
most of them focused on structural recursion over lists or trees instead
of graphs. Examples include the higher order function fold (Sheard and
Fegaras 1993) in ML and Haskell, and the generic computation pattern
called catamorphism in programming algebras (Bird and de Moor 1996).
It is UnCAL (Buneman et al. 2000) that shows the idea of structural
recursion can be extended to graph, but the focus there was on query fusion
optimization rather than bidirectionalization.

7 Conclusion

In this paper, we report our first attempt towards solving the challenging
problem of bidirectional transformation on graphs. We show that structural
recursion on graphs and its unique bulk semantics play an important role
not only in query optimization, which has been recognized in the database
community, but also in automatic derivation of backward evaluation, which

35

has not be recognized so far. As far as we are aware, the bidirectional seman-
tics of UnCAL proposed in this paper is the first complete language-based
framework for general graph transformations. Current prototype system and
its application to bidirectional (UML) model transformation and model syn-
chronization show that our framework is promising for practical use.
Future work includes extension of the framework for more flexible in-

sertion, introduction of graph schemas to provide structure information for
more efficient bidirectional computation, and more practical application of
the system for bidirectional model transformation in software engineering.

Acknowledgements

The research was supported in part by the Grand-Challenging Project
on “Linguistic Foundation for Bidirectional Model Transformation” from
National Institute of Informatics, the National Natural Science Foundation
of China under Grant No. 60528006, Grant-in-Aid for Scientific Research
(C) No.20500043, and Encouragement of Young Scientists (B) of the Grant-
in-Aid for Scientific Research No. 20700035.

References

François Bancilhon and Nicolas Spyratos. Update semantics of relational
views. ACM Transactions on Database Systems, 6(4):557–575, 1981.
J. Bezivin, B. Rumpe, and Tratt L Schürr A. Model transformation in
practice workshop announcement. InMTiP 2005, International Workshop
on Model Transformations in Practice. Springer-Verlag, 2005.
Richard Bird and Oege de Moor. Algebras of Programming. Prentice Hall,
1996.
Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre
Pilkiewicz, and Alan Schmitt. Boomerang: resourceful lenses for string
data. In George C. Necula and Philip Wadler, editors, POPL ’08:
ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages, pages 407–419. ACM, 2008.
Val Breazu-Tannen, Peter Buneman, and Shamim Naqvi. Structural recur-
sion as a query language. In Proc. of the Third International Workshop
on Database Programming Languages(DBPL 91), pages 9–19, 1991.
Peter Buneman, Mary F. Fernandez, and Dan Suciu. UnQL: a query lan-
guage and algebra for semistructured data based on structural recursion.
VLDB Journal: Very Large Data Bases, 9(1):76–110, 2000.
Stavros S. Cosmadakis and Christos H. Papadimitriou. Updates of relational
views. Journal of the ACM, 31(4):742–760, 1984.

36

Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy
Schürr, and James F. Terwilliger. Bidirectional transformations: A cross-
discipline perspective. In International Conference on Model Transforma-
tion (ICMT 2009), pages 260–283. LNCS 5563, Springer, 2009.
Umeshwar Dayal and Philip A. Bernstein. On the correct translation of
update operations on relational views. ACM Transactions on Database
Systems, 7(3):381–416, 1982.
Karsten Ehrig, Esther Guerra, Juan de Lara, Laszló Lengyel, Tihamér Lev-
endovszky, Ulrike Prange, Gabriele Taentzer, Dániel Varró, and Szilvia
Varró-Gyapay. Model transformation by graph transformation: A com-
parative study. In MTiP 2005, International Workshop on Model Trans-
formations in Practice. Springer-Verlag, 2005.
J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bi-directional tree transfor-
mations: a linguistic approach to the view update problem. In POPL
’05: ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages, pages 233–246, 2005.
Georg Gottlob, Paolo Paolini, and Roberto Zicari. Properties and update
semantics of consistent views. ACM Transactions on Database Systems,
13(4):486–524, 1988.
Stephen J. Hegner. Foundations of canonical update support for closed
database views. In ICDT ’90: Proceedings of the Third International Con-
ference on Database Theory, pages 422–436, London, UK, 1990. Springer-
Verlag.
Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Akihiko Takano. Tu-
pling calculation eliminates multiple data traversals. In ACM SIGPLAN
International Conference on Functional Programming (ICFP’97), pages
164–175, Amsterdam, The Netherlands, June 1997. ACM Press.
Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable ed-
itor for developing structured documents based on bidirectional transfor-
mations. Higher-Order and Symbolic Computation, 21(1-2):89–118, 2008.
Frederic Jouault and Ivan Kurtev. Transforming models with ATL. In

Proceedings of Satellite Events at the MoDELS 2005 Conference, pages
128–138. LNCS 3814, Springer, 2006.
Ralf Lämmel. Coupled Software Transformations (Extended Abstract).
In First International Workshop on Software Evolution Transformations,
November 2004.
Dominique Laurent, Jens Lechtenbörger, Nicolas Spyratos, and Gottfried
Vossen. Monotonic complements for independent data warehouses. The
VLDB Journal, 10(4):295–315, 2001.

37

Jens Lechtenbörger and Gottfried Vossen. On the computation of relational
view complements. ACM Transactions on Database Systems, 28(2):175–
208, 2003.
Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. Bidirectional interpreta-
tion of xquery. In PEPM ’07: Proceedings of the 2007 ACM SIGPLAN
symposium on Partial Evaluation and semantics-based Program Manipu-
lation, pages 21–30, New York, NY, USA, 2007. ACM Press.
Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana, and
Masato Takeichi. Bidirectionalization transformation based on automatic
derivation of view complement functions. In 12th ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP 2007), pages
47–58. ACM Press, October 2007.
Lambert Meertens. Designing constraint maintainers for user interaction.
http://www.cwi.nl/∼lambert, June 1998.
OMG. MOF QVT final adopted specification. http://www.omg.org/docs/
ptc/05-11-01.pdf, 2005.
Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Ob-
ject exchange across heterogeneous information sources. In Philip S. Yu
and Arbee L. P. Chen, editors, ICDE, pages 251–260. IEEE Computer
Society, 1995.
Oscar Pastor and Juan Carlos Molina. Model-Driven Architecture in Prac-

tice: A Software Production Environment Based on Conceptual Modeling.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.
T. Sheard and L. Fegaras. A fold for all seasons. In Proc. Conference

on Functional Programming Languages and Computer Architecture, pages
233–242, Copenhagen, June 1993.
Perdita Stevens. Bidirectional model transformations in QVT: Semantic
issues and open questions. In Gregor Engels, Bill Opdyke, Douglas C.
Schmidt, and Frank Weil, editors, Proc. 10th MoDELS, volume 4735 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2007.

A Proof of Main Theorem

Before proving the main theorem, we show the following lemma.

Lemma 3. Composition and decomposition (decomp) for every UnCAL
constructor
 (
 ∈ {(), {}, &y, { : },∪,⊕,@, :=}) satisfy the following
(DPutGet) and (DGetPut) properties.

(
) v1 . . . vn = G

decomp(�) v1...vn
(G) = (v1, . . . , vn)

(DGetPut)

38

decomp(�) v1...vn
(G′) = (v′1 . . . , v′n)

(
) v1 . . . vn = G′ (DPutGet)

This lemma trivially holds by the definition of bidirectional semantics
for each constructor.
Now return to the proof of the main theorem. It is sufficient to show that

every bidirectional UnCAL operator satisfies (PutGet) and (GetPut)
properties, provided that both [[·]] (get) and 〈〈·〉〉 (put) do not fail.
For forward direction, every operator behaves identically to the original

UnCAL semantics, so they are defined according to the original semantics.
For example, [[e1 ∪ e2]] is defined only if input markers of result graphs of
e1 and e2 agree, as in the definition in Section 4.4. So we focus on the
backward direction. For the base case, we disallow any modifications on
nullary constructors, so 〈〈{}〉〉, 〈〈()〉〉 and 〈〈&y〉〉 is defined only if the target
remains unchanged. In this case, both (GetPut) and (PutGet) trivially
hold. Next we examine the inductive case. For 〈〈{t1:t2}〉〉ρ, we disallow
modifications of the number of edges from the root. Under this constraint,
it succeeds if put on both components t1 and t2 succeed. Let [[t1]]

ρ = l1
and [[t2]]

ρ = G1, respectively so G = {l1:G1} is produced as a final result.
To see if (GetPut) holds, suppose (GetPut) on both operands hold as
an induction hypothesis. decomp{l1:G1}(G) in 〈〈{t1:t2}〉〉 decompose G by
traversing one edge (root(G), l′, v) from the root of G and obtain l1 as the
label of the edge, and remaining part as subgraph(G, v). If there are more
than one of such edges, the put is undefined (and the violation of the above
condition is signaled). But if the target is unmodified, we obtain l1 and
G1 again by (DGetPut). Because of the induction hypothesis, we obtain
unmodified environment ρ for both operands. The result environment is
unchanged because ρ = ρ �ρ ρ. Other simple operators except rec can be
treated similarly.
To see if (PutGet) holds, suppose (PutGet) on both operands hold.

We have to show that 〈〈{t1:t2}〉〉ρG′ = ρ′ implies [[{t1:t2}]]ρ
′
= G′. According

to the definition of 〈〈{t1:t2}〉〉G′ , decomp{l1:G1} G′ = (l′, G′′), 〈〈t1〉〉ρl′ = ρ′1 and
〈〈t2〉〉ρG′′ = ρ′2 should have been computed. Since we can assume [[t1]]

ρ′1 = l′

and [[t2]]
ρ′2 = G′′ from the above induction hypothesis, and ρ′1�ρρ

′
2 has been

equal to ρ′, and by (DPutGet), i.e., {l′:G′′} = G′, [[{t1:t2}]]ρ
′
= G′ holds.

Other simple operators except rec can be treated similarly.
For (GetPut) on rec(λ($l , $g). tb)(ta), since composerec and decomprec

satisfy symmetry similar to (DGetPut) and (DPutGet), no modifica-
tion on the view obtain identical set of bindings of $l and $g . So �ρ

in merge for 〈〈rec(λ($l , $g). tb)(ta)〉〉ρG for G = [[rec(λ($l , $g). tb)(ta)]]
ρ

results in no conflict. For (PutGet) on rec, G′
a in the definition of

〈〈rec(λ($l , $g). tb)(ta)〉〉ρG′ is obtained again in another get assuming
(PutGet) property on ta. So assuming (DPutGet) like property of

39

decomprec and composerec, input of compose in another get will be identical
to decomposition {(e, (V ′

e , E′
e, I

′
e, O

′
e))} of the first put in the definition of

decomprec, thus another get results in G′ again. Same argument hold in the
presence of insertion because of the given structured IDs for every insertion
unit discussed in Section 4.5.

B Merging operation in backward semantics of rec

Backward evaluation of rec(tb)(ta) needs to combine backward evaluation
results of the body (tb). This has been simply represented using

⋃
in function

merge in Figure 11. This operation does not consist of simple compnentwise
set union, since simple unification would result in apppearance of original
edge as well as the edge after modification at the same time, when the label
of an edge is modified.
This section describes this operation. Meanings of each symbols are the

same as in Figure 11 unless mentioned otherwise.
The following equation shows, in function merge, how to compute G′

a,
the updated graph to be fed to backward evaluation of ta, where G1 \ G2

denotes componetwize (set) difference of two graphs.

G′
a = Ga ⊕Gadd

a \Gdel
a

where (Gadd
a , Gdel

a) =

⊕


(G′

e \Ge, Ge \G′
e)

∣∣∣∣∣∣∣∣∣∣

e ∈ Ea, (e, ρ′e) ∈ R,
(V ′

e , E′
e, I

′
e, O

′
e) = ρ′e($g),

G′
e = (V

′
e ∪ {u}, E′

e ∪ {(u, ρ′e($l), root(I
′
e))}, I ′e, O′

e),
(Ve, Ee, Ie, Oe) = ρe($g),
Ge = (Ve ∪ {u}, Ee ∪ {(u, ρe($l), root(Ie))}, Ie, Oe)




where
⊕
is defined by ⊕ across first and second component of pairs:

(g1, g2)
⊕
(g3, g4) = (g1 ⊕ g3, g2 ⊕ g4).

G′
a is computed by accumulating “effects” for graphs Ge consists of edge e
in Ea and reachable subgraphs pointed by e. “effects” are computed by set
union and set difference between original subgraphGe and updated subgraph
G′

e.

C Customer2Order in UnCAL

Figure 12 shows UnCAL code that is translated from UnQL code in Sec-
tion 2.3.

40

rec(\ ($L,$fv3).

if $L = customer

then rec(\ ($L,$o).

if $L = order

then rec(\ ($L,$c).

if $L = order_of

then rec(\ ($L,$date).

if $L = date

then rec(\ ($L,$no).

if $L = no

then rec(\ ($L,$a).

if $L = add

then rec(\ ($L,$name).

if $L = name

then rec(\ ($L,$code).

if $L = code

then rec(\ ($L,$info).

if $L = info

then rec(\ ($L,$fv1).

if $L = type

then

rec(\ ($L,$anyv2).

if

$L = shipping

then

{order:

{

date: $date,

no: $no,

customer_name: $name,

addr: $a}}

else

{})

($fv1)

else

{})

($a)

else {})

($a)

else {})

($a)

else {})

($c)

else {})

($c)

else {})

($o)

else {})

($o)

else {})

($o)

else {})

($fv3)

else {})

($db)

Figure 12: UnCAL code translated from UnQL code in Section 2.3

41

